

Proton Plan

Eric Prebys, FNAL Accelerator Division (talk given by Jeff Spalding)

Charge

- Develop a plan for a set of upgrades and operational improvements to maximize proton delivery to:
 - NuMI beamline (120 GeV from MI)
 - Booster Neutrino Beam (BNB) (8 GeV from Booster)
- Goal: complete the upgrades over the next 3 years, and operate through 2015 or beyond

Note: this plan precedes the Proton Driver replacement of the existing Proton Source (Linac+Booster)

- Develop the budget and timeline for these improvements
- Estimate projected proton delivery (PoT) to both beam lines

Management Organization

- Project support team:
 - Resource-Loaded Schedule (MS Project) Domann
 - Accounting Cobra interface to Lab's system Nestander
 - Project management support Sims
 - Web and documentation support Wehmann

Context: Staged Approach to Neutrino Program

- Stage 0 (now):
 - Goal: deliver 2.5E13 protons per 2 second MI cycle to NuMI (~2E20 p/yr
 - Deliver 1-2E20 protons per year to Booster Neutrino Beam (currently MiniBooNE)
- Stage 1 (~2008):
 - A combination of Main Injector RF improvements and operational loading initiatives will increase the NuMI intensity to 4-5E13 protons per 2.2 second cycle (~3E20 p/yr)
 - This will increase by ~20% as protons currently used for pbar production become available
 - It is hoped we can continue to operate BNB at the 2E20 p/yr level during this period.
- Stage 2 (post-collider):
 - Consider (for example) using the Recycler as a preloader to the Main Injector and reducing the Main Injector cycle time
 - The exact scope and potential of these improvements are under study
- Stage 3 (proton driver)
 - Main Injector must accommodate 1.5E14 protons every 1.5 seconds
 - NuMI beamline and target must also be compatible with these intensities.

Limits to Proton Intensity

- Total proton rate from Proton Source (Linac+Booster):
 - Booster batch size
 - Typical ~5E12 protons/batch
 - Booster repetition rate
 - 15 Hz instantaneous
 - Currently 7.5Hz average (limited by injection bump and RF cooling)
 - Beam loss
 - Damage and/or activation of Booster components
 - Above ground radiation
- Total protons accelerated in Main Injector:
 - Maximum main injector load
 - Six "slots" for booster batches (3E13)
 - Up to ~11 with slip stacking (5.5E13)
 - RF stability limitations (currently ~4E13)
 - Cycle time:
 - 1.4s + loading time (1/15s per booster batch)

Operational Limit

Plan Strategy

See document: BEAMS-DOC-1441 (11/09/04) at

http://beamsdocs.fnal.gov/cgi-bin/public/DocDB/DocumentDatabase

- Increase the proton delivery from the Booster (to both NuMI and BNB)
 - Increase acceptance by improving orbit control and beam quality
 - Increase maximum average Booster repetition rate
- Increase the beam intensity in the Main Injector for NuMI
 - Main Injector multi-batch operation
 - Slip stacking in Main Injector (requires RF upgrade)
- Improve operational reliability
 - Alleviate 7835 Problem
 - Linac quad supplies
 - Booster and Linac Instrumentation
 - Booster RF Upgrade

Cost Tables from Beams-Doc-1441 (a)

TABLE 2: M&S and SWF in \$K at Level 3

WBS	Description	M&S	M&S	M&S	SWF	SWF	SWF
	Description	Base	Cont	Total	Base	Cont	Total
1	Proton Plan	16,513	42%	23,486	6,648	57%	10,419
1.1	Linac Upgrades	2,705	86%	5,039	981	65%	1,622
1.1.1	Linac PA Vulnerability	2,000	100%	4,000	300	100%	600
1.1.2	Linac Quad Power Supplies	617	50%	925	628	50%	942
1.1.3	Linac Instrumentation Upgrade	88	30%	114	53	50%	80
1.2	Booster Upgrades	6,499	35%	8,765	2,777	54%	4,262
1.2.1	Determine Rep Rate Limit	0	0	0	110	50%	165
1.2.2	ORBUMP System	256	42%	364	231	47%	338
1.2.3	Corrector System	629	58%	995	715	57%	1,124
1.2.4	30 Hz Harmonic	1,031	35%	1,388	279	60%	447
1.2.5	Gamma-t System	0	0	0	50	100%	100
1.2.6	Alignment Improvements	0	0	0	60	50%	90
1.2.7	Drift Tube Cooling	10	50%	15	10	50%	15
1.2.8	Booster RF Cavity #20	300	50%	450	120	50%	180
1.2.9	Booster Solid State RF PA's	4,200	30%	5,460	960	50%	1,440
1.2.10	Booster Instrumentation	73	27%	93	242	50%	363
1.3	Main Injector Upgrades	7,294	32%	9,661	2,026	60%	3,239
1.3.1	Large Aperture Quads	194	50%	291	406	50%	609
1.3.2	Main Injector Collimator	200	100%	400	150	100%	300
1.3.3	NUMI Multi-batch Operation	0	0	0	250	100%	500
1.3.4	Main Injector RF Upgrade	6,900	30%	8,970	1,220	50%	1,830
1.4	Management	15	32%	20	864	50%	1,296

46% contingency in M&S+SWF Dominated by M&S (esp RF parts)

WBS is aligned to AD Organization by Accelerator

Cost Tables from Beams-Doc-1441 (b)

TABLE 3: Total cost (M&S and SWF) by fiscal year.

WBS	Description	Base Estimate: M&S and SWF				Total with Contingency
		FY05 FY06 FY07 Total				
1	Proton Plan	8,341	10,965	3,854	23,161	33,904
1.1	Linac Upgrades	1,039	2,097	550	3,686	6,661
1.1.1	Linac PA Vulnerability	650	1,100	550	2,300	4,600
1.1.2	Linac Quad Power Supplies	248	997	0	1,245	1,867
1.1.3	Linac Instrumentation Upgrade	141	0	0	141	194
1.2	Booster Upgrades	1,945	4,718	2,613	9,276	13,027
1.2.1	Determine Rep Rate Limit	110	0	0	110	165
1.2.2	ORBUMP System	486	0	0	486	702
1.2.3	Corrector System	583	761	0	1,344	2,119
1.2.4	30 Hz Harmonic	146	1,165	0	1,310	1,835
1.2.5	Gamma-t System	50	0	0	50	100
1.2.6	Alignment Improvements	30	30	0	60	90
1.2.7	Drift Tube Cooling	20	0	0	20	30
1.2.8	Booster RF Cavity #20	420	0	0	420	630
1.2.9	Booster Solid State RF PA's	0	2,680	2,480	5,160	6,900
1.2.10	Booster Instrumentation	100	82	133	315	456
1.3	Main Injector Upgrades	5,010	3,860	450	9,320	12,900
1.3.1	Large Aperture Quads	600	0	0	600	900
1.3.2	Main Injector Collimator	250	100	0	350	700
1.3.3	NUMI Multi-batch Operation	50	150	50	250	500
1.3.4	Main Injector RF Upgrade	4,110	3,610	400	8,120	10,800
1.4	Management	348	290	241	879	1,316

currently redefining scope to fit new budget guidance

Current Budget Guidance

 After the cancellation of BTeV, we have the following budget guidance (M&S+SWF):

	FY05	FY06	FY07	FY08	Total
Present					
Guidance	7327	7845	6915	6116	28203

- Most Likely Scenario
 - Main Injector RF project and Booster Corrector System get delayed by one year, relative to the original plan
 - Booster RF Solid State PA upgrade deferred indefinitely

Present Plan (draft - not fully rescoped)

Resource-Loaded Schedule Cost and Schedule Reporting

Building resource loaded schedule:

- For several L3 projects the work is already ongoing (TD is building Orbump, large aperture quads...)
 - Budget codes established and capturing costs
- Scope under development for some L3 projects (eg. MI RF upgrade: prototype phase, then review and production phase)
 - Developing strategy, milestones, and decision points
 - Will include estimates with large contingency as placeholders where necessary

Will use the same cost and schedule reporting tools as the Run II Upgrades

- Reporting via monthly PMG
- Change control similar to Run II Upgrades

Status of Major Work

- Linac (1)
 - (1.1) 7835 Task force
 - Working with vendor (Burle)
 - Placed order for 12 extra spare tubes (two year supply) over the next two years
 - Studying lifetime issues (filament current, etc)
 - Formulating replacement plan
 - (1.3) Low Energy Linac (LEL) quad power supplies
 - Working on prototype, based on HEL supplies
- Booster (2)
 - (2.2) ORBUMP System
 - Magnets First magnet built and tested, proceeding with the rest
 - Power Supply Procuring and assembling
 - (2.3) Corrector System
 - Conceptual design complete for the corrector magnets, working on detailed design
 - Working on power supply specs
 - (2.4) 30 Hz Harmonic in Booster cycle
 - Work Proceeding on Prototype

Status of Major Work (cont'd)

- (3) Main Injector
 - (note that the BLM/BPM upgrades are under the Run II)
 - (3.1) Large Aperture Quads
 - In fabrication. Will be ready for 05 shutdown
 - (3.2) Loss mitigation/collimator system
 - Working group formed
 - Identifying collimator candidates for MI-8
 - Starting ring collimator system design based on Booster system
 - (3.3) Multi-batch operation
 - Demonstrated mixed mode (2+5) operation w/ 5 batches of 2E12 to NuMI (goal For FY05 is 5 batches of 5E12)
 - Developing schemes for <u>slip-stacking</u> and barrier stacking
 - (3.4) Main Injector RF Upgrade

Main Injector Loading

- Initial NuMI operation ("2+5"):
 - Two batches are slip stacked for antiproton production
 - Five more batches loaded for NuMI
 - All are accelerated together
- Ultimate NuMI operation ("2+9"):
 - Five batches will be loaded into the Main Injector, leaving one empty slot
 - Six more batches will be loaded and slipped with the first to make two for antiproton production and 9 for NuMI
 - This will exceed the capacity of the current RF system

Main Injector RF

- The present MI RF system:
 - Number of cavities: 18
 - Total Power Available: 175 kW/cavity (single PA)
 - Total Power dissipated: 58.6 kW/cavity
 - Power available for acceleration: 116.4 kW/cavity
 - Maximum acceleration rate: 200 GeV/s
- In the absence of beam loading compensation, an RF system is stable until the energy expended in accelerating the beam is equal to the energy dissipated in the cavity.
- Feed forward loops can increase this stability threshold
- For the present system
 - Maximum guaranteed stable intensity: 3.3E13 protons
 - With feed-forward 4E13 is likely
 - Power limited intensity: 6.5E13 protons

Options

- By adding an additional 28.9 kW passive load to each cavity, we could ensure 87.5 kW of power for stable acceleration
 - Limit ~ 4.9E13 protons/load
 - Cost scale ~\$2M
- Each cavity has an additional port for a second PA, allowing an additional 350 kW of total power
 - Limit ~ 9.8E13 protons/load in the most conservative case (175 kW power dissipation)
 - Possibly higher with feedback loops
 - Cost scale ~\$12M

Main Injector RF in FY05 (3.4)

- Build prototype cavity from existing spare
 - Passive load
 - Existing port or cut new one?
 - Second PA
 - Requires new modulator, other parts exist
- Carry out a series of studies in the Main Injector
 - Determine effectiveness of feed-forward loops
 - Determine optimal passive load and predict intensity limit for oneand two PA scenarios
- Refine cost estimate for passive load and PA upgrades
- Use this information to develop and review long range plan (beginning 2006)

Proton Projections

- Phases of Operation
 - Phase I (now)
 - Booster lattice distortions ameliorated
 - Booster limited to 7.5Hz total repetition rate
 - Main Injector limited to 4E13 protons (2+5 operation)
 - Phase II (after 2005 shutdown)
 - Injection bump (ORBUMP) replaced
 - Drift tube cooling in Booster RF cooling finished
 - Booster capable of 8-9Hz operation
 - MI still limited to 2+5 operation
 - Phase III (after 2007 shutdown)
 - MI RF upgrade complete
 - 2+9 operation to NuMI

Predicted Peak Proton Intensity Limits

Main Injector Loading

Main Injector Load

Long Term Projections (~"delayed" scenario in document)

(for FY05 projections see McGinnis Talk)

"Design" PoT from the document

	Booster Batch Size	Main Injector Load	Cycle Time	MI Intensity	Booster Rate*	Total Proton Rate	Annual Rate at end of Phase		
		(AP + NuMI)	(sec)	(protons)	(Hz)	(p/hr)	NuMI	BNB	
Actual Operation									
July, 04	5.0E+12	1+0	2.0	0.5E+13	5.1	0.8E+17	0	3.3E+20	
Proton Plan									
Phase I	5.10E+12	2+1→2+5	2.0	3.6E+13	6.3	1.0E+17	2.0E+20	1.5E+20	
Phase II	5.3E+12	2+5	2.0	3.7E+13	7.5	1.2E+17	2.2E+20	2.8E+20	
Phase III	5.50E+12	2+9	2.2	6.0E+13	8.3	1.5E+17	3.4E+20	2.2E+20	
Beyond Scope of Present Plan									
11 Hz	5.50E+12	2+9	2.2	6.1E+13	11.0	2.0E+17	3.4E+20	5.0E+20	

Summary

- The Proton Plan encompasses accelerator improvements to maximize protons to NuMI and the 8 GeV line over the next 10 years
- The implementation of the Plan will provide
 - ~7E16 p/hr to NuMI (~3E20 p/yr)
 - Up to ~4E16 p/hr (1-2E20 p/yr) for the 8 GeV line
- We are studying concepts for further improvements in the post collider era (for example using the Recycler as a preloader)
- A Resource-loaded schedule and cost and schedule tracking system are in development